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Abstract

The problem of the origin of the � parameter in the Minimal Supersymmetric Standard

Model can be solved by introducing singlet supermultiplets with non-renormalizable

couplings to the ordinary Higgs supermultiplets. The Peccei-Quinn symmetry is bro-

ken at a scale which is the geometric mean between the weak scale and the Planck

scale, yielding a � term of the right order of magnitude and an invisible axion. These

models also predict one or more singlet fermions which have electroweak-scale masses

and suppressed couplings to MSSM states. I consider the case that such a singlet

fermion, containing the axino as an admixture, is the lightest supersymmetric parti-

cle. I work out the relevant couplings in several of the simplest models of this type,

and compute the partial decay widths of the next-to-lightest supersymmetric particle

involving leptons or jets. Although these decays will have an average proper decay

length which is most likely much larger than a typical collider detector, they can occa-

sionally occur within the detector, providing a striking signal. With a large sample of

supersymmetric events, there will be an opportunity to observe these decays, and so

gain direct information about physics at very high energy scales.
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1 Introduction

Supersymmetry (for reviews, see [1, 2]) has the ability to stabilize the hierarchy between

the electroweak and Planck scales. However, the minimal supersymmetric standard model

(MSSM) still requires an explanation for the magnitude of the supersymmetric Higgs mass

parameter �. Assuming that there are no �ne-tuned cancellations in the MSSM Higgs

potential, � should be of roughly the same magnitude as the soft supersymmetry-breaking

masses. This suggests that � arises as a vacuum expectation value (VEV) which is �xed

by a potential with dimensionful parameters that are in turn determined by supersymmetry

breaking.

Supersymmetry also requires some additional structure in order to solve the strong CP-

problem. The � parameter breaks the Peccei-Quinn (PQ) symmetry [3] that is otherwise

naturally present in the MSSM at the renormalizable level, so it is an attractive proposition

that the dynamics which leads to the � term simultaneously provide for an invisible axion.

Astrophysical constraints on the axion leave open a window [4] from roughly

109 GeV <� f <� 1012 GeV (1.1)

for the VEV of the PQ-breaking �eld.
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In this paper I will consider the phenomenology of a class of models with an invisible axion

[5, 6] of the DFSZ type [6, 7, 8]. In these models, the � term arises from non-renormalizable

terms in the superpotential, for example:

W =
��
MP

X1X2HuHd: (1.2)

(Here MP = 2:4� 1018 GeV is the reduced Planck mass, and �� is a dimensionless coupling

which I assume is not much smaller than unity.) The sum of the PQ charges of X1 and X2

must be equal and opposite to that of the MSSM Higgs super�elds. When the scalar compo-

nents of the neutral chiral super�elds X1 and X2 acquire VEVs of order f , the approximate

PQ symmetry is spontaneously broken, giving rise to a � term of the right order of magni-

tude and an invisible axion. It is natural to assume that this occurs with X1 and X2 along a

nearly at direction in the potential. Then the low-energy degrees of freedom will typically

include a pair of neutral chiral supermultiplets which are mixtures of the originalX1 and X2.

One of these contains as its imaginary scalar component the invisible axion of the model,

and its fermion superpartner, the \axino". In some models, X1 and X2 are the same �eld,

so that the axino is the only new light singlet fermion. If X1 and X2 are distinct, then there

will be another light Majorana fermion \singlino". The axino and singlino both have odd

R-parity and can mix. They obtain masses which are not much larger than the weak scale

(but might be as small as of order a keV depending on the details of the model [9]). The

upper limit can be understood from the facts that the (mass)2 splittings between members

of the same supermultiplet are bounded above by roughly m2
3=2, the squared gravitino mass,

and the axion is nearly massless.

The axino and the singlino are very weakly coupled to MSSM states, and cannot be

directly produced in collider experiments at any signi�cant rate. However, if either (or both)

of these particles is lighter than all of the MSSM superpartners, then it will be the light-

est supersymmetric particle (LSP) and can appear in decays from ordinary supersymmetric

events.y In this paper I will argue there will be an opportunity in the era after supersym-

metry is discovered to search for and measure the very long lifetime of the next-to-lightest

supersymmetric particle (NLSP) into �nal states that include the singlino or axino, despite

its very weak coupling.

In order to discuss the phenomenology in a general way, I will denote the relevant axino

yIf R-parity is conserved and the singlino or the axino is the LSP, it will be absolutely stable and
could dominate the energy density of the universe too soon. This potential problem can be solved (as in
many similar cases) by invoking a low reheat temperature, at the cost of requiring in addition a low-scale
baryogenesis mechanism. Furthermore, the NLSP decays will safely occur long before nucleosynthesis in the
standard cosmology.
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or singlino LSP by eS, and refer to it generically as a singlino. It is part of a super�eld S. In

the low-energy theory it participates in a superpotential of the form

W = �
�
1 +

�

v
S
�
HuHd +

1

2
meSS2 (1.3)

in which

� =
��
MP

hX1ihX2i; (1.4)

and I have introduced a dimensionless coupling parameter

� � v=f (1.5)

with v = 175 GeV, the electroweak scale. (There are also soft mass terms for the scalar

components of S, which will not concern us.) For example, if X1 and X2 are the same �eld,

then one can read o� from eq. (1.2) that � = 2v=f . For numerical purposes, this paper will

use as a benchmark the value � � 10�8 corresponding to f � (few)�1010 GeV. There is also
a dimensionless, holomorphic soft term in the lagrangian

� LSUSY breaking =
hb
MP

X1X2HuHd + c:c: (1.6)

where hb is of order mW . This gives rise to (among other terms) the necessary holomorphic

soft (mass)2 term for the Higgs bosons in the MSSM:

� LSUSY breaking = bHuHd + c:c: (1.7)

Note that b = hbhX1ihX2i=MP is of order m2
W , as required for proper electroweak symmetry

breaking.

The coupling � and mass parameter meS parameterize our ignorance of the high-energy

theory. The smallness of � means that S nearly decouples. However, the conservation of

R-parity implies that if the singlino is the LSP, then decays of the NLSP to eS will not

su�er any competition and can be observed if they happen within a collider detector. These

decays occur and are potentially observable because the \singlino" eS mixes slightly with

the gauginos and Higgsinos, as well as couples directly to higgsino-Higgs pairs. In that

sense, these models are similar to the well-studied [10]-[15] \next-to-minimal supersymmetric

standard model" (NMSSM) [16]. The di�erences include: the extremely small magnitude

of �; the fact that the �eld S does not obtain a VEV; the absence (or at least weak-scale

phenomenological irrelevance) of an S3 term in the superpotential; and the presence of a tree-

level supersymmetric mass term for eS. Nevertheless, it is useful to compare the situation

4



under study here to a very weakly coupled limit of the NMSSM. Indeed, the possibility of

macroscopic decays involving a singlino have already been noted in ref. [15], but considering

larger couplings (e�ectively � >� 10�6) and for smaller values of meS appropriate for LEP.

If the NLSP is the lightest of the ordinary MSSM neutralinos fN1, then it can decay

according to

fN1 ! ff eS (1.8)

through virtual sleptons and squarks and virtual or on-shell Z bosons and Higgs bosons.

The decay width is estimated very roughly by

� � m eN1

16�
j��=vj2 � (suppression factors): (1.9)

The suppression factors include the e�ects of electroweak couplings, mixing angles, kinematic

suppressions, and (if the mediating boson is not on-shell) three-body phase space. Without

these e�ects, the rough estimate (for m eN1

� 100 GeV and j��=vj � 10�8) would be of order

1 meter�1 for �.

After including the suppression e�ects in realistic models, we will �nd that when fN1 is

allowed to decay through an on-shell CP-even Higgs boson h0, the inverse decay width is of

order meters or tens of meters. Of course, the decay fN1 ! h0 eS may not be kinematically

allowed. In that case, there may still be allowed decays fN1 ! Z0 eS. These are typically fur-

ther suppressed by a mixing angle, because the singlino must mix with the MSSM higgsinos

in order to couple to the Z boson. Nevertheless, we will �nd that these mixing angles are

typically large enough so that the inverse decay widths can be of order hundreds of meters.

Finally, it may be that m eN1

�meS < mZ . In that case, there can still be three-body decaysfN1 ! ff eS through virtual sleptons, squarks, and the Z0. (Decays through o�-shell Higgs

bosons can also occur, but are typically very small because the MSSM Higgs boson widths

are tiny unless they are heavy.) If the Z boson is far o�-shell, then with the usual model

prejudices that sleptons are much lighter than squarks one �nds that the smallest inverse

decay widths are for `+`� eS �nal states, and can be of order tens of kilometers. (All of these

results assume � � 10�8, and the decay widths must be scaled with �2.)

The majority of decays fN1 ! ff eS will evidently occur well outside of a typical collider

detector. However, with a signi�cant number of supersymmetric events available, a small

but �nite fraction will occur inside the detector where the displaced secondary vertex can be

distinguished. Since the decaying fN1 and the resulting eS are invisible, the experimental sig-

nature will involve an energetic lepton-antilepton pair or dijet pair with a signi�cant opening

angle appearing \from nothing" (with no corresponding charged particle track pointing back
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to the interaction point) at a common point. This determination could be accomplished

within the inner tracking volume of a detector, but might also be possible and perhaps even

easier to distinguish if the decay occurs farther from the beam pipe. Thus, decays occurring

within a meter to several meters from the interaction point could be a striking, if rare, signal.

At the Large Hadron Collider, the number of supersymmetric events expected per year

with a low luminosity option of 10 fb�1/year can be roughly of order a few thousand to

a few million or more for 200 GeV > m eN1

> 50 GeV. (This assumes meg � meq � 7m eN1

;

of course this is quite model-dependent.) Every event gives two possible NLSP decays.

Therefore one can aspire to detect rare decays with widths as long as hundreds of kilometers

by searching within the supersymmetric event sample [17]. In the limit of small decay

widths, the probability that a particular fN1 ! ff eS decay will occur within a distance L of

the interaction point is given by

P (L) � L�=� (1.10)

where � is the invariant partial width for that decay channel. Supersymmetric events will

be \tagged" by the other particles from the sparticle decays and the presence of large E/T .

Since the slowly decaying fN1 will be massive and not ultrarelativistic, one can use timing

information together with the pointing information from the tracking detectors and drift

chambers and perhaps vetoes from the muon system to eradicate backgrounds from cosmic

rays and other sources. There have also been proposals motivated by gauge-mediated su-

persymmetry breaking models and by neutralino decays to axino and photon [18] to build

special detector components and instrumented tunnels to aid in the search for very slow

decays [19, 20]. At future e+e� linear colliders, supersymmetric event rates are smaller, but

the two-body decays mentioned above might occur often enough to be detected. The signal

is somewhat more problematic at future runs of the Fermilab Tevatron collider, since the

total supersymmetric event rates are likely to be considerably smaller. In this paper, I will

simply remain optimistic and choose to present results for decay partial widths down to as

small as (1000 km)�1.

In these models, there are also singlet scalars S within the same supermultiplet as eS.
These very weakly coupled scalars have masses of order mW (or, in the case of the invisible

axion, essentially 0). However, decays like fN1
eSS depend on couplings that are e�ectively

doubly suppressed by �. Other decays involving only singlet scalars always have competition

from ordinary unsuppressed MSSM decays, and so are not relevant for colliders.

The rest of this paper is organized as follows. In section 2, I examine some speci�c models

which realize the idea outlined above. Section 3 discusses the couplings and mixings of the

singlino/axino, and the relevant decays. Some representative numerical results for decays
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to the singlino are presented in section 4. Section 5 contains some concluding remarks. An

Appendix contains complete formulas for decay widths, including the e�ects of arbitrary

phases.

2 Singlino masses and couplings in models with an

intermediate-scale solution to the � problem

Let us consider several models which realize the basic idea outlined in the introduction. The

magnitude of f � hX1;2i is (up to dimensionless couplings) the geometric mean of the Planck

scale and the weak scale in order to agree with eq. (1.1). One way that this could happen

is if the soft supersymmetry-breaking (mass)2 of X1 is driven negative at an intermediate

scale. More generally, X1 and X2 correspond to a nearly-at direction in the potential, so

that dimensionless supersymmetry breaking terms involving X1 and X2 will always favor a

non-trivial minimum at an intermediate scale. The key things we want to show are that

these models generically contain one or more singlet fermions which have electroweak scale

(or smaller) masses, and couplings that are of order v=f (with possible enhancements) to

the MSSM Higgs �elds.

For example, suppose that the superpotential contains, in addition to eq. (1.2), a term

W =
�X
6MP

X1X
3
2 ; (2.1)

as in [8]. This �xes the PQ charges of the super�elds, ensuring the presence of an invisible

axion provided that no other terms break the PQ symmetry. Here �X is a dimensionless

coupling which is assumed to be of order unity. The supersymmetry breaking Lagrangian

must then include

� LSUSY breaking = m2
1jX1j2 +m2

2jX2j2 � hX
6MP

(X1X
3
2 + c:c:) (2.2)

where hX is a mass parameter of order the electroweak scale and has been taken to be real

and positive without loss of generality. A nontrivial global minimum will exist provided

e.g. that m2
1 is negative at the scale of the VEV. However, it is important to note that this

is not necessary. The presence of a holomorphic coupling hX always favors spontaneous

symmetry breaking at an intermediate scale. So VEVs for X1 and X2 can arise from a

negative squared mass, and/or an hX which is suÆciently large [21, 2]. In any case, hX1i
and hX2i are of order (mWMP )

1=2 � 1010 GeV, which is naturally within the invisible axion

window.
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Let us parameterize the VEVs of X1 and X2 by an overall magnitude f and an angle

�, so that hX1i = f cos � and hX2i = f sin�. Now expand the �elds around their VEVs to

obtain low-energy supermultiplet degrees of freedom S1; S2:�
X1

X2

�
=
�
cos�
sin�

�
f +

�
cos � sin �
� sin � cos �

��
S1
S2

�
: (2.3)

By requiring that the superpotential masses for the fermions eS1 and eS2 derived from eq. (2.1)

are diagonal, one can solve for the mixing angle � in terms of the VEV angle �, with the

result � = �=2. [This typically does not diagonalize the axion and other light scalar masses,

and depends particularly on the choice of eq. (2.1).] The resulting masses and couplings foreS1 and eS2 are then found to be

meS1 = �Xf
2

2MP

sin� (cos�� 1); �eS1 = v

f

 
cos�=2

cos�
� sin�=2

sin�

!
; (2.4)

meS2 = �Xf
2

2MP
sin� (cos�+ 1); �eS2 = v

f

 
sin�=2

cos �
+
cos�=2

sin�

!
: (2.5)

[Compare eq. (1.3).] The scale f and the angle � could also be computed, in principle, in

terms of the parameters in the soft supersymmetry-breaking Lagrangian eq. (2.2) and the

superpotential. The same parameters also determine the soft scalar mass of the saxion and

other scalars with electroweak scale masses. However, these will not play any direct role in

this paper, so I will not do this explicitly, and I will treat f and � as free parameters.

One interesting limit is that of small � (i.e., hX2i small compared to hX1i), in which the

mass eigenstate eS1 is the axino. Then one �nds that, up to phases,

meS1 = �Xf
2

4MP

sin3 �; �eS1 = v

2f
; (2.6)

meS2 = �Xf
2

MP
sin�; �eS2 = v

f sin�
: (2.7)

Note that both masses become small in this limit. The coupling �eS1 must grow like 1= sin�

in this parameterization in order for � to not become much less than v. (LEP has not

discovered a higgsino.) Another interesting limit is � = �=4 (VEVs of equal magnitude),

resulting in

meS1 = 0:10
�Xf

2

MP
; �eS1 = 0:77v=f ; (2.8)

meS2 = 0:60
�Xf

2

MP
; �eS2 = 1:85v=f; (2.9)
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again, up to phases. Both eS1 and eS2 have masses that are roughly of order the electroweak

scale. In general they each contain an admixture of the axino. It is interesting to note that

jmeS1 j=(�Xf 2=MP ) < 0:1 over the whole range � < �=4. So it is not unlikely that one or both

of eS1 and eS2 is lighter than all MSSM sparticles.

Other models can be obtained by choosing superpotentials

W =
�X
6MP

X1X
3
2 +

��
2MP

X2
2HuHd; (2.10)

as in ref. [22], or

W =
�X
6MP

X1X
3
2 +

��
2MP

X2
1HuHd: (2.11)

In both of these cases, the diagonalized singlino masses are still given as in eqs. (2.4) and

(2.5), since they only depend on the �X term in the superpotential. However, the couplings

are modi�ed to, respectively: and

�eS1 = �2v sin�=2

f sin�
; �eS2 = 2v cos�=2

f sin�
: (2.12)

for eq. (2.10), and

�eS1 = 2v cos�=2

f cos�
; �eS2 = 2v sin�=2

f cos�
(2.13)

for eq. (2.11).

Another similar model is obtained by assuming a di�erent form of the �X term used to

stabilize the potential at large �eld strengths:

W =
�X
4MP

X2
1X

2
2 +

��
2MP

X2
1HuHd: (2.14)

Again using the mixing parameterization eq. (2.3), one �nds in this class of models that now

� = (1=2) tan�1(2 tan 2�) in order that eS1 and eS2 are mass eigenstates. In terms of the VEV

angle �, we �nd:

meS1 =
�Xf

2

4MP

�
1� cos 2�

q
1 + 4 tan2 2�

�
; (2.15)

�eS1 =

p
2v

f cos�

241 + 1q
1 + 4 tan2 2�

351=2 ; (2.16)

meS2 =
�Xf

2

4MP

�
1 + cos 2�

q
1 + 4 tan2 2�

�
; (2.17)

�eS2 =

p
2v

f cos�

241� 1q
1 + 4 tan2 2�

351=2 ; (2.18)
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up to phases. In the limit �! 0, one �nds

meS1 = 3�Xf
2

2MP

sin2 �; �eS1 = 2v

f
; (2.19)

meS2 = �Xf
2

2MP
; �eS2 = 4v

f
sin�; (2.20)

which features a parametric suppression in the mass of eS1. In the case of equal VEVs

� = �=4, one obtains instead

meS1 = �Xf
2

4MP

; �eS1 = 2v

f
; (2.21)

meS2 = 3�Xf
2

4MP
; �eS2 = 2v

f
: (2.22)

Finally, the limit � ! �=2 (i.e., hX1i small compared to hX2i) yields a very light eS2 and a

relative enhancement of the eS1 coupling:
meS1 = �Xf

2

2MP
; �eS1 = 2v

f cos�
; (2.23)

meS2 = 3�Xf
2

2MP
cos2 �; �eS2 = 4v

f
: (2.24)

There are clearly many possible more complicated variations on these models; for exam-

ple, schemes with more than two �elds Xi participating in the PQ-breaking and �-generating

dynamics (see, for example, ref. [23]). It is also possible to have a scheme in which there is

only one �eld X, which obtains a VEV at an intermediate scale below where the soft mass

term m2
X runs negative. This corresponds to the � ! 0; �X ! 0 limit of eq. (2.14) witheS2 removed, so there is just a light axino with � = 2v=f . The essential features of all these

models are that they contain one or more singlino �elds, with couplings naively of order

v=f but which can be signi�cantly enhanced, and which can easily be lighter than all of the

MSSM odd-R-parity sparticles.

3 Mixing of the singlino with MSSM neutralinos

As shown in the previous section, one or both singlino mass eigenstates eS1 or eS2 can be

lighter than all MSSM sparticles. In this section, I will consider the relevant mixings and

couplings of such a singlino to the MSSM states, and the ensuing decay partial widths. I

will use eS to refer generically to either eS1 or eS2.
10



The properties of the singlino are determined by the superpotential eq. (1.3). At tree

level, there are singlino-higgsino-Higgs boson couplings. Other couplings, including singlino-

fermion-sfermion and singlino-higgsino-Z boson, arise due to singlino-gaugino and singlino-

higgsino mixing. In order to discover the couplings of the eS to the physical MSSM states,

one must diagonalize the the 5�5 neutralino mass matrix. In the ( eS, eB, fW 0, fH0
d ,
fH0
u) basis,

it is given by:

M (5) =

0BBBBB@
meS 0 0 ���s� ���c�
0 M1 0 �c� sW mZ s� sW mZ

0 0 M2 c� cW mZ �s� cW mZ

���s� �c� sW mZ c� cW mZ 0 ��
���c� s� sW mZ �s� cW mZ �� 0

1CCCCCA ; (3.1)

where s�; c� stand for sin �, cos �, and sW ; cW for sin �W , cos �W . In the following, I shall

take meS to be real and positive without loss of generality. This allows � to have an arbitrary

phase. Now, the o�-diagonal terms proportional to � can be treated as a perturbation.

Therefore, our procedure is to �rst diagonalize M (4), the lower right 4� 4 mass sub-matrix.

This is accomplished with a unitary matrix Zij (i; j = 1; : : : ; 4) according to:

Z�
ikM

(4)
kl Z

�
jl = Æijm eNj

: (3.2)

Here the masses m eNj
are real and positive; this can always be done, regardless of the relative

complex phases of �, M1 and M2. To the lowest order in a perturbative expansion in �, the

singlino eS is a mass eigenstate, and the ordinary MSSM neutralinos have the same masses

that they would have had if eS were absent. I will choose an ordering scheme such thateS = fN0, with meS = m eN0

< m eN1

< m eN3

< m eN3

< m eN4

.

The full 5� 5 neutralino-singlino mass matrix can then be diagonalized according to

N�
ikM

(5)
kl N

�
jl = Æijm eNj

; (3.3)

where now i; j = 0; 1; : : : ; 4. To lowest order in a perturbation in �, one �nds that N00 = 1

and Nij = Zij for i; j = 1; 2; 3; 4. So one can write

Nij =
�

1 N0j

Ni0 Zij

�
: (3.4)

The neutralino-singlino mixing elements can be determined in terms of the 4 � 4 Zij, the

mass eigenvalues, and the parameter �:

N0j =
4X

k=1

Zkj

h
����m eNk

(s�Zk3 + c�Zk4) + ��meS(s�Z�
k3 + c�Z

�
k4)
i
=(m2eNk

�m2eS); (3.5)

Ni0 = �
h
��m eNi

(s�Z
�
i3 + c�Z

�
i4) + ����meS(s�Zi3 + c�Zi4)

i
=(m2eNi

�m2eS): (3.6)
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(Again, nothing has been assumed here about the complex phases of the parameters M1,

M2, � and �.) This expansion is an excellent approximation because j�j is very small. In

particular, one can check by numerical diagonalization of eq. (3.1) that the perturbative

result is very accurate unless the denominator m2eN1

�m2eS in eqs. (3.5) and (3.6) is tuned to

0 to an extreme accuracy (comparable to j��meSj), in which case the decay widths studied

below are completely negligible anyway.

The relevant neutralino and singlino couplings for low energy phenomenology are all

contained in the �ve eigenmasses m eNi
and meS (for which corrections proportional to � are

negligible) and the neutralino mixing quantities Nij and N0j with (i; j = 1; : : : ; 4). The

decay rates with a singlino in the �nal state can now be worked out, as in the NMSSM [12].

I present formulas for the relevant widths in an Appendix, taking care to allow for possible

arbitrary phases in the neutralino mixing matrix and in �. In general, the phase of � could

be anything, since it is not constrained by low-energy experiments on CP violation and is

not necessarily correlated with the phase of �. Because the results might be useful for other

problems, I will provide the general results for a decay involving fNi to fNj; the case needed

in this paper is obtained by simply taking i = 1 and j = 0. Numerical illustrations of these

results will be given in Section 4.

The necessary coupling for the decay

fN1 ! h0 eS (3.7)

arises directly from the superpotential eq. (1.3) through the higgsino content of fN1. It also

obtains contributions from the singlino-higgsino mixings N03 and N04 combined with the

gaugino content of fN1, and from the singlino-gaugino mixing elements N01 and N02 combined

with the higgsino content of fN1. The total coupling is given explicitly by eq. (A.2). The

Higgs will then decay according to h0 ! bb, WW �, �+��, cc, or gg, providing a visible

product displaced from the original interaction point producing the event.

The decay

fN1 ! Z eS (3.8)

relies both on singlino-higgsino mixings N03 and N04 and on the higgsino content of fN1,

and is therefore somewhat more suppressed in models with a bino-like NLSP. The relevant

coupling is given explicitly by eq. (A.6). The Z boson then decays with Standard Model

branching fractions to quark-antiquark and lepton-antilepton pairs.

When neither two-body decay is open, the neutralino NLSP will decay through o�-shell

sleptons, squarks, the Z, and Higgs bosons. The full expressions for these decays are given

12



in the Appendix. The most important contribution for a bino-like NLSP is typically through

sleptons, and therefore relies on the singlino-bino and singlino-wino mixing elements N01 and

N02. Fortunately, these are not greatly suppressed in many models unless j�j is very large.

There remains the possibility of a two-body decay fN1 !  eS, which arises at the one-

loop level. However, using the results of [24] (with appropriate changes for the couplings

to correspond to the model under present consideration), I have veri�ed that these decays

are always suppressed compared to the two- and three-body decays considered here, with

widths that cannot be much larger than a few times (1000 km)�1 in the examples in the

next section with � = 10�8. Since these decays are not competitive here, I will not present

results for them.

A separate possibility is that the NLSP is a stau, or that all three lighter, mostly-right-

handed, slepton mass eigenstates (e�1; e�R; eeR) have no open decays except to the singlino. In

that case, one can hope to observe e�1 ! � eS (and perhaps e�R ! � eS and eeR ! e eS). The

decaying slepton will appear in the detector as a muon-like charged particle track, or as a

track with an anomalously high ionization rate. The rare decay to the singlino will yield a

large-angle kink in the track leading either to a tau jet or an electron or muon. Since the

decaying particle is heavy, there will be a signi�cant angle at the kink. The decay widths

are suppressed only by the singlino-gaugino mixing, so they can occur within the detector

often enough to measure, even if � is signi�cantly less than 10�8.

4 Representative results for decays to the singlino

In this section, I will consider some illustrative numerical results for decays to the singlino,

�rst for neutralino NLSP models and then for stau or slepton NLSP models. I will take

� = 10�8, with the understanding that the results have to be scaled according to � / �2.

4.1 Neutralino decays

In order to study the decay partial widths of a neutralino, I will employ the concept of

\model lines", in which one supersymmetry-breaking parameter is allowed to vary, setting

the overall scale for all sparticle masses. First, consider a typical model scenario with a

bino-like NLSP and the LSP singlino mass �xed at meS = 50 GeV. The bino mass parameter

M1 is varied, with the wino mass parameter M2 and the � term then determined according

to M2 = 2:0M1; � = 3:0M1. The 5 � 5 neutralino mass matrix is then fully determined by

also choosing �xed values of tan � = 3:0 and � = 10�8. The right-handed slepton masses

meeR = me�R = me�R are constrained to be the greater of 1:2m eN1

and 110 GeV. This assures
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Figure 1: Visible decay widths of bino-like neutralinos fN1 into �nal states involving the
singlino, as a function of varying m eN1

for �xed meS = 50 GeV and � = 10�8. The MSSM
model parameters are described in the text. The solid line is the total visible decay width.
The long dashed line is the partial width into `+`� eS where ` = e or �. The dot-dashed
line is the width into �+�� eS. The short-dashed line includes jj eS where j is any u; d; s; c
(anti)-quark jet or gluon jet, and the dotted line is for bb eS. The thin solid line is the width
for WW � eS through an on-shell Higgs boson.

that a slepton cannot be the NLSP and should not be found at LEP. Mixing in the stau

sector is neglected. The left-handed slepton masses are determined by m2eeL = m2eeR+0:5M2
2 . I

will assume that squarks are not light enough to give a signi�cant contribution to the decay.

Finally, the lightest Higgs boson mass is assumed to be mh0 = 120 GeV, safely out of the

reach of LEP, and to obey the decoupling limit � = ���=2. The results for the partial decay
widths to visible states (excluding neutrinos), as found from the equations in the Appendix,

are shown in Figure 1 as a function of m eN1

.

For m eN1

<� 120 GeV in this model line, the decays are dominated by the contributions

of the virtual right-handed sleptons. The total inverse decay lengths are of order tens of

kilometers, and are nearly democratic between e+e�, �+�� and �+�� �nal states. The

\knee" nearm eN1

= 92 GeV is merely an artifact of the constraintmeeR > 110 GeV; for smaller

neutralino masses, the virtual slepton is necessarily more o�-shell due to the constraint that

it has not been discovered at LEP.
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For m eN1

>� 120 GeV, the contributions from the virtual Z boson [the terms WZ , WZt,

and WZu in eq. (A.12)] begin to be important. This increases the decay partial widths, with

contributions to ff that are roughly proportional to the Z branching fraction, so that dijet

�nal states dominate. For m eN1

> 142 GeV, the virtual Z boson is on-shell, and the decay

becomes two-body fN1 ! Z0 eS. (The three-body formula is used in the vicinity of threshold,

however, in order to correctly include interference e�ects with the virtual slepton diagrams

in that regime.) This leads to a total visible decay width greater than (1000 meters)�1. For

negative �, the decay widths tend to be somewhat smaller.

Finally, for m eN1

> meS +mh0 = 170 GeV in this model line, the decay fN1 ! h0 eS opens

up and completely dominates. Since there is a direct higgsino-singlino-Higgs boson coupling,

this is much larger than the two-body decay to Z eS, even though the Z boson is lighter. The

results are shown assuming Standard Model branching fractions for h0 into �nal states bb,

WW �, �+��, and (lumped together into the \jj" category) cc and gg. Here the partial

decay width of fN1 to the bb eS �nal state is found to be of order (10 meters)�1. Of course, if

the h0 mass is smaller, this mode will open up and dominate for smaller values of m eN1

.

In the era after supersymmetry is discovered, the situation will be rather di�erent; we will

presumably know the MSSM sparticle mass spectrum, but the singlino mass and coupling

will be completely unknown. So, a more useful summary of the situation we could face

might be something like that shown in Figure 2. This is a particular point along the same

model line just discussed, with m eN1

= 150 GeV, and with the horizontal axis representing

the possible values of the singlino mass.

A somewhat di�erent scenario ensues if the NLSP is a higgsino-like neutralino. To illus-

trate this, I choose a pair of model lines with � = �0:8M1, and all other parameter relation-

ships as described above for Figure 1. The results are shown in Figure 3, but now only for

the total visible decay width. Since fN1 has a smaller gaugino content, the decays through

virtual sleptons are highly suppressed. Conversely, the large higgsino component of fN1 en-

hances the probability of decay through a virtual Z boson. So, for m eN1

< meS +meh0 = 170

GeV in this model line, the ff decays will obey Z boson branching fractions. However, there

turns out to be an accidental suppression of the matrix element for � < 0 in the convention

speci�ed in eq. (3.1) (which is the same as in refs. [1, 2, 10]), particularly when the Z boson

is o�-shell. For m eN1

> 170 GeV, the decay fN1 ! h0 eS length is of order several meters if fN1

is mostly higgsino.

In the above analyses, I have assumed that H0 and A0 are very heavy, and that three-

body amplitudes involving them are negligible. Although this is appropriate throughout

most of parameter space, it is possible that for large tan�, the couplings of H0 and A0 could
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Figure 2: As in Figure 1, but for �xed m eN1

= 150 GeV, and varying eS (LSP) mass.
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Figure 3: Total visible decay widths of higgsino-like neutralinos fN1 into �nal states ff eS,
as a function of varying m eN1

for �xed meS = 50 GeV. The model parameters satisfy the
constraints M2 = 2:0M1, tan� = 3:0, and � = +0:8M1 (solid line) or � = �0:8M1 (dashed
line), and other constraints described in the text.
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be large enough to make an appreciable contribution to �(fN1 ! bb eS), even if H0 and A0

are far o�-shell.

Finally, I note that the decay widths discussed here depend on the phase of the parameter

�. This phase is not constrained by low-energy CP violating observables, and so might be

considered completely arbitrary. I have checked, using the formulas in the Appendix, that

varying Arg(�), while keeping all other parameters �xed, can change the fN1 decay widths

by an order of magnitude or so. In models with a bino-like NLSP as in Figure 1, the largest

decay widths tend to occur for real �.

4.2 Slepton decays

It is also possible that the NLSP is a slepton e�1 or, e�ectively, all three mainly right-handed

sleptons eeR, e�R and e�1. The latter scenario is realized if tan � is not too large, so that the

three sleptons are mass-degenerate to within less than m� . These possibilities are familiar

[25]-[31] in gauge-mediated supersymmetry breaking models [32] but could also be realized in

supergravity-mediated models if there is not a large universal contribution to scalar masses,

or if D-term contributions (proportional to some exotic U(1) quantum number) are large.

If e�1 is the NLSP, then the two-body decays e�1 ! � eS are suppressed only by the bino-

singlino mixing. In Figure 4, I show the results for this decay width for a typical model

line with varying M1 and �xed LSP mass meS. In order to ensure that a stau is the NLSP,

the constraint me�1 = 0:9m eN1

(thick lines) and 0:7m eN1

(thin lines) are imposed. Other

relevant model line parameters are M2 = 2:0M1, � = 3:0M1, tan� = 3:0. To a good

approximation, the decay width depends only on the absolute value of se� in the stau mixing

parameterization of eq. (A.24), so results are shown for se� = 0, 0:25, and 0:5. The solid line

is also approximately true for eeR ! e eS and e�R ! � eS as a function of meeR and me�R , by
taking se� = 0, ce� = 1.

Because there is relatively little suppression in this case, the inverse decay widths are of

order tens of meters. This is discernible at a collider which can produce several hundred

supersymmetric events. Each such event would contain a pair of quasi-stable stau or slepton

highly ionizing tracks, which can have an anomalously high dE=dx to distinguish them from

muons. In a small fraction of events, one of the stau or slepton tracks will have a kink leading

to a lepton or tau jet, corresponding to the decay. The resulting tau or lepton would have

a signi�cant angle with respect to the original highly ionizing track, yielding a potentially

spectacular and nearly background-free signal.
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Figure 4: Decay widths for e�1 ! � eS as a function of varying me�1 . The model parameters
satisfy meS = 80 GeV, and the constraints M2 = 2:0M1, � = 3:0M1, and tan� = 3:0. Solid
lines are for the unmixed case se� = 0, the dashed lines for se� = 0:25 and dash-dotted lines
for se� = 0:5. The thicker (thinner) lines are for me�1=m eN1

= 0:9 (0.7).

5 Conclusions

The presence of the � term in the MSSM and the solution to the strong CP problem may have

a common explanation at an intermediate scale. Direct detection of the resulting axion is

quite problematic. In this paper, I have argued that these models may nevertheless give rise

to observable signals at colliders, through delayed decays to singlino fermions that include

the axino as a mixture. These events will be a rare (perhaps very rare) occurrence within a

large sample of supersymmetric events at the Large Hadron Collider or a future e+e� linear

collider. There is also a possibility that the lightest MSSM sparticle could have slow decays

into more than one singlino. Note that the LHC cross sections can be very large precisely

when the NLSP decay widths are small.

The numerical estimate in section 4 of this paper have used � = 10�8 for the singlino-

higgsino-Higgs coupling parameter. Of course, the actual value could be signi�cantly smaller.

On the other hand, I showed that in some models the couplings are parametrically enhanced,

and the mass of one or more singlinos is reduced, if one of the VEVs giving rise to the � term

is relatively small. Furthermore, the magnitude of � can be signi�cantly larger if the high
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scale MP is replaced by a somewhat lower scale that governs non-renormalizable operators,

for example a string scale or a compacti�cation scale that is not far above the apparent

gauge coupling uni�cation scale.

Future planning and analysis of collider physics experiments should take into account the

possibility that the apparent LSP is actually unstable. Besides the models I have discussed

here, there are at least two other plausible variations on the MSSM which can lead to delayed

rare decays of what might appear, at �rst, to be the stable LSP.

First, gauge-mediated supersymmetry-breaking (GMSB) models [32] with a supersymmetry-

breaking scale
p
F that is not too large will give rise to decays that could have macroscopic

proper lengths [25]-[31]. It is interesting to compare the reason for this to that in the models

discussed in the present paper. In GMSB models, an estimate for a decay width of the NLSP

to the goldstino/gravitino eG is � � m5
W=16�(

p
F )4, while in the decays to a singlino/axino

LSP eS, the estimate is � � m3
W=16�f

2. So NLSP decays are suppressed by the 4th power

of the supersymmetry-breaking scale in GMSB, but only by the square of the PQ scale in

light axino/singlino models. GMSB models can, in fact, give rise to signals which might

be very diÆcult to distinguish from those discussed here. For example, if the NLSP is a

neutralino with a signi�cant higgsino content, it can have [25, 33, 26, 34] decays fN1 ! h0 eG
and fN1 ! Z0 eG that look like the decays discussed in this paper. Or, if a stau is the NLSP,

it can appear quasi-stable with rare decays e�1 ! � eG occurring within the detector. Second,

one can have weak R-parity violating couplings [35] in the MSSM which could also give

decays like fN1 ! `+`0�� or fN1 ! qq0�. These signatures could mimic those discussed in the

present paper.

If these signals appear, it will be interesting to try to establish the correct explanation

from among the competing hypotheses. The prize for doing so will be that we will gain an

understanding of physics at scales far above those probed by direct sparticle production at

colliders.
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Appendix: Complete formulas for neutralino decay widths

including the e�ects of arbitrary phases

In this appendix, I give formulas for the two- and three-body decays of a neutralino to

another neutralino and a Higgs boson, Z boson, or fermion-antifermion pair. The model is
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the extension of the MSSM with one singlet super�eld as speci�ed by eq. (1.3). This also

includes the MSSM and NMSSM as special cases. The results needed in Section 4 of this

paper are obtained by taking the neutralino mass eigenstate indices to be i = 1 and j = 0

in the following.

First, let us consider the two-body decay of a neutralino to another neutralino and the

lightest CP-even neutral Higgs boson. The relevant decay width is equal to:

�(fNi ! h0fNj) =
m eNi

16�

q
�(1; r2j ; r

2
h0)
�
jGh0

ij j2(1 + r2j � r2h0) + 2Re[(Gh0

ij )
2]rj

�
(A.1)

where rj = m eNj
=m eNi

; rh0 = mh0=m eNi
; �(a; b; c) = a2 + b2 + c2 � 2ab � 2ac � 2bc; and the

neutralino-neutralino-Higgs coupling is given by

Gh0

ij =
1

2
(gN�

i2 � g0N�
i1)(s�N

�
j3 + c�N

�
j4) +

��p
2v

(c�N
�
i3 � s�N

�
i4)N

�
j0 + (i$ j): (A.2)

Here c� and s� denote cos� and sin� with � the Higgs mixing angle in the notation of [10].

The results for the decays to the heavier neutral CP-even (H0) and CP-odd (A0) Higgs

bosons can be obtained by instead using the couplings:

GH0

ij =
1

2
(gN�

i2 � g0N�
i1)(�c�N�

j3 + s�N
�
j4) +

��p
2v
(s�N

�
i3 + c�N

�
i4)N

�
j0 + (i$ j) (A.3)

for fNi ! H0fNj, and

GA0

ij =
i

2
(gN�

i2 � g0N�
i1)(s�N

�
j3 � c�N

�
j4) + i

��p
2v

(c�N
�
i3 + s�N

�
i4)N

�
j0 + (i$ j) (A.4)

for fNi ! A0fNj, and substituting mh0 ! mH0 or mA0 in the obvious way. However, in the

numerical analyses of Section 4, H0 and A0 are assumed to be heavy and decoupled, so these

decays are neglected.

Similarly, the two-body decay of a neutralino to another neutralino and a Z boson has a

width given by

�(fNi ! Z0fNj) =
m eNi

16�

q
�(1; r2j ; r

2
Z)
�
jGZ

ijj2[1 + r2j � 2r2Z + (1� r2j )
2=r2Z] + 6Re[(GZ

ij)
2]rj

�
(A.5)

where rZ = mZ=m eNi
, and the neutralino-neutralino-Z coupling is given by

GZ
ij =

g

2cW
(�Ni3N

�
j3 +Ni4N

�
j4): (A.6)

Finally we consider three-body decays fNi ! fffNj, where f is any Standard Model quark

or lepton. Results for these decays have appeared in refs. [12, 36, 37], but here I include
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the e�ects of Higgs boson exchanges and arbitrary phases of the couplings . The di�erential

partial widths can be expressed in terms of the dimensionless mass ratios rf = mf=m eNi
,

rj = m eNj
=m eNi

, rZ = mZ=m eNi
, r�Z = �Z=m eNi

, and r� = m�=m eNi
for each of � = h0; A0, and

H0. I use dimensionless kinematic variables

ŝ = (p eNi
� p eNj

)2=p2eNi
(A.7)

t̂ = (p eNi
� pf)

2=p2eNi
(A.8)

û = 1 + r2j + 2r2f � ŝ� t̂ (A.9)

with limits of integration

t̂min;max =
1

2
[1 + r2j � ŝ+ 2r2f � f(1� 4r2f=ŝ)�(1; ŝ; r

2
j )g1=2]; (A.10)

ŝmin = 4r2f ; ŝmax = (1� rj)
2: (A.11)

The results for widths can be expressed asy

d�(fNi ! fffNj) =
ncm eNi

512�3
(
X

W ) dt̂dŝ ; (A.12)

where nc = 1 (3) for leptons (quarks). The individual contributions to
P
W are:

WZ =
4(a2f + b2f )

(ŝ� r2Z)
2 + r2Zr

2
�Z

n
jGZ

ijj2
h
(1� û)(û� r2j ) + (1� t̂)(t̂� r2j )

i
+2Re[(GZ

ij)
2]rj ŝ

o
(A.13)

Wt =
2X

n;n0=1

(anj a
n0�
j + bnj b

n0�
j )(an�i an

0

i + bn�i bn
0

i )
(1� t̂)(t̂� r2j )

(r2efn � t̂)(r2efn0

� t̂)
(A.14)

Wu = Wt(t̂! û) (A.15)

Wtu = 2Re
2X

n;n0=1

1

(r2efn � t̂)(r2efn0

� û)

h
(anj b

n0

j a
n0�
i bn�i + an

0

j b
n
j a

n�
i bn

0�
i )(r2j � t̂û)

+(anj a
n0

j a
n�
i an

0�
i + bnj b

n0

j b
n�
i bn

0�
i )ŝrj

i
(A.16)

WZt =
4(ŝ� r2Z)

(ŝ� r2Z)
2 + r2Zr

2
�Z

Re
2X

n=1

h
(afa

n
i a

n�
j + bfb

n�
i bnj )fGZ

ij(1� t̂)(t̂� r2j )

+GZ�
ij ŝrjg

i
=(r2efn � t̂) (A.17)

WZu = WZt(t̂! û) (A.18)

Wh0;H0 =
X

�;�0=h0;H0

4ŝRe[G�
fG

�0�
f ]

(r2� � ŝ)(r2�0 � ŝ)

n
(1 + r2j � ŝ)Re[G�

ijG
�0�
ij ] + 2ŝrjRe[G

�
ijG

�0

ij ]
o

(A.19)

yIn computing these results, I have neglected fermion masses arising from spinor algebra in matrix ele-
ments, but not in the kinematic limits of integration or the couplings.
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WA0 =
4ŝjGA0

f j2
(r2A0 � ŝ)2

n
(1 + r2j � ŝ)jGA0

ij j2 + 2ŝrjRe[(G
A0

ij )
2]
o

(A.20)

W�t = � X
�=h0;H0;A0

X
n=1;2

2

(r2� � ŝ)(r2efn � t̂)
Re[ŝG�

f (t̂G
�
ij + rjG

��
ij )(a

n�
i bnj + an�j bni )] (A.21)

W�u = W�t(t̂! û): (A.22)

Quantities appearing in the above results are as follows. First,

af = � g

cW
(T3f � qfs

2
W ); bf = �qfgs2W=cW (A.23)

are the Z boson couplings to quarks and leptons with (T3f ; qf) = (1=2; 2=3) for up-type

quarks, (�1=2;�1=3) for down-type quarks, and (�1=2;�1) for charged leptons. Left-right

mixing and CP violation in the sfermion sector are parameterized by a unitary matrix, which

I choosez to write as � efRefL
�
=

 
cef sef�s�ef c�ef

!� ef1ef2
�
; (A.24)

where jcef j2 + jsef j2 = 1, and mef1 < mef2 , The resulting couplings for down-type sfermions

(eb; e� ) are:
a
ef1
i =

p
2sef [gT3fN�

i2 + g0(qf � T3f )N
�
i1]� c�efgN�

i3mf=
p
2c�mW ; (A.25)

b
ef1
i =

p
2c�efg0qfNi1 + sefgNi3mf=

p
2c�mW (A.26)

a
ef2
i = �

p
2cef [gT3fN�

i2 + g0(qf � T3f )N
�
i1]� s�efgN�

i3mf=
p
2c�mW ; (A.27)

b
ef2
i =

p
2s�efg0qfNi1 � cefgNi3mf=

p
2c�mW (A.28)

for i = 0; 1; : : : 4. For up-type fermions one must replace N
(�)
i3 =c� by N

(�)
i4 =s� in eqs. (A.25)-

(A.28). (However, for the cases of interest in this paper, fN1 ! tt eS is surely not kinematically

allowed, and decays fN1 ! ��S are not interesting.) In the expressions for the contributions

to the widths, I have used the abbreviations ani = a
efn
i , etc. The various Higgs boson couplings

to Standard Model fermions are given by, e.g.:

Gh0

b =
gmbs�
2mW c�

; Gh0

t = � gmtc�
2mW s�

; (A.29)

GH0

b = � gmbc�
2mW c�

; GH0

t = � gmts�
2mW s�

; (A.30)

GA0

b = �igmb tan �

2mW
; GA0

t = �igmt cot�

2mW
; (A.31)

zThis parameterization has the feature that in the typical unmixed, CP-conserving case cef = 1, sef = 0,ef1 = efR and ef2 = efL, with no minus signs.
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for bottom and top quarks. The Higgs couplings for taus are obtained by mb ! m� , and for

other quarks and leptons by the obvious substitutions.

The two-body decay width for a stau to a neutralino or singlino is given by:

�(e�1 ! �fNi) =
me�1
16�

q
�(1; r2i ; r

2
� )
n
(jae�1i j2 + jbe�1i j2)(1� r2i � r2� )� 4r�riRe[a

e�1
i b
e�1�
i ]
o
(A.32)

where now ri = m eNi
=me�1 and r� = m�=me�1 , and the couplings ae�1i , be�1i are given already by

eqs. (A.25)-(A.28). In section 4, this formula is used with i = 0, corresponding to e�1 ! � eS.
The results for e�R ! � eS and eeR ! e eS are obtained by taking ce� ! 1 and se� ! 0.
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